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Beyond simple 
shading…
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Fernando Birra

Surface Detail

• Most real surfaces 
don’t look smooth 
or uniform

• Surface detail is 
missing!

• Several techniques 
can be used to add 
detail to 
surfaces…
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Fernando Birra

Surface Detail

• create features on surfaces by 
adding polygons (doors, windows, 
lettering, shadows) to a base 
polygon

• surface-detail polygons need to be 
given priority in visible surface 
determination

• surface-detail polygons are rendered 
and made visible instead of the base 
polygon, thus adding detail

Surface-Detail Polygons
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Surface Detail

The finer the detail, 
the less viable it is to 
add surface-detail 
polygons…

Better map an image 
(digitised or 
synthesised) onto the 
surfaces

Texture Mapping

*from Unity3D Forum

How many surface-detail 
polygons would be needed for 

the image below?
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Surface Detail

• Mapping can be done in 
2D (painting) or 3D 
(sculpting).  

• Textures can be digitised 
or synthesised

• Textures can be used for 
almost anything related to 
shading, and not only to 
replace object’s colour!

• What type of mapping to 
use?

• What will we do with the 
looked up value?

Texture Mapping

*from SIGGRAPH.org education materials
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Surface Detail

• Bump mapping perturbs surface 
normals according to a bump 
map (texture)

• Surface geometry is not 
perturbed

• Bump maps are implementation 
dependent. For instance, we can 
use just the R and G values to 
tilt the normal vector

• We will need a pair of mutually 
perpendicular vectors s and t

Bump mapping

n = n + rs + gt

n

s

t

n’
n
_

n� =
n

�n�Perturbed normalised normal:

r and g are the values obtained from the Red and 
Green channels of the bump texture and represent 
the directional derivatives of the normal vector 
along s and t. Bump map values need to be mapped 
to [-1,1] range.
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Fernando Birra

Surface Detail

Bump mapping
Displacement map D - contains displacements along the original normal. 

Black (0) is mapped to a maximum negative displacement along the 
normal and white (1) means the opposite, positive displacement. 0.5 grey 

values mean no displacement. 

+ =+ 1

Red = dD/ds Green = dD/dt Blue = 1 Final Bump Map*

* this is just a possible example
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Surface Detail

Bump mapping

+ =

original textured model normal map final bump mapped model

A more direct approach is to store n’s, 
n’t and n’z (in tangent space) directly in 
RGB channels of the bump map 
texture. This normal will be the one 
used. A (0,0,1) in tangent space value 
will produce the original normal.

Tangent space

Tangent space is easily computed 
using the original normal vector and 
the directions of the texture 
coordinates. The normal vector 
coordinates are provided with the 
mesh, and uv coordinates also.
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Surface Detail

Bump mapping (how to get the bi-tangent 
vectors?)

dP1

dP2

dP1 = du1 * T + dv1 * B

dP2 = du2 * T + dv2 * B

Solve for the 
unknowns T and 

B!

Assemble the system:Edges e1 and e2 of a triangle correspond 
to the changes in positions dP1 and dP2, 
and to the changes in texture 
coordinates (du1,dv1) and (du2, dv2), 
respectively.

T=(Tx,Ty,Tz) and B=(Bx,By,Bz) can be 
computed in object coordinates and stored as 

vertex attributes
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Surface Detail

Bump mapping (how to get the bi-tangent 
vectors?)�
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Converts from tangent 
space to model space

Converts from model 
space to tangent space*

* lighting can be performed in tangent space, if we also 
convert light and view direction vectors 
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Fernando Birra

Transparency

"Glasses" by Gilles Tran (2006), using povray
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Transparency

Without Refraction

• Without refraction, light rays 
pass through transparent 
objects without being “bent”

• Interpolated transparency: 
 
 

• Filtered transparency: 
 

I� = (1� kt1)I�1 + kt1I�2

I� = I�1 + kt1Ot�I�2

Transmission coefficient = 
transparency of polygon 1

Polygon’s transparency colour 
(Coloured filters will have different 

values for each wavelength)

Opacity of polygon 1

Transparent polygon 1 in front 
of opaque polygon 2

The methods will have to be applied 
recursively, in back to front order…

What if we have more transparent 
polygons in front?
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Fernando Birra

Transparency

1.Draw all opaque objects using traditional z-buffer

2.Create 4 additional buffers with the following, for each pixel: transparency value, flag 
(initially off), colour and depth (initially closest possible value)

3. Render each transparent object and, for each pixel:

1.if its z value is closer than opaque z-buffer and more distant than current 
transparent z-buffer, then set flag and save colour, transparency and transparent z-
value.

4.When all objects have been processed, the transparent object buffers have the 
information about the more distant transparent objects at each pixel (where the flag 
value is set).

5.Update opaque buffers by blending colour and z-buffer from transparent buffers.

6.Repeat the process to render closer objects while the flag buffer has been modified at 
least once.

Implementation
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Fernando Birra

Transparency

• objects 1, 2, 3 and 4 are opaque and 
rendered first

• object 5 is transparent and needs to be 
rendered before object 6, also 
transparent

• Object depth sorting could solve the 
problem in this example

• In this case all polygons are transparent 
and there is no object sorting valid for all 
pixels

• Either split each polygon by its 
intersection lines with other polygons and 
perform object sorted rendering or…

• … apply the algorithm presented before.
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Fernando Birra

Transparency

𝛳i

𝛳t

Refraction

sin �i

sin �t
=

�t�

�i�

AB

line of sight

unrefracted (geometrical) line 
of sight

refracted (optical) line of sight

transparent 
object

• Without refraction, object B 
would be visible along the 
geometrical line of sight

• With refraction, object A will 
be visible along that line of sight

• Light rays “bend” according to 
Snell’s law:

η𝜆 - ratio between speed 
of light at certain 
wavelength 𝜆 in a vacuum 
and its speed inside the 
medium.  All materials have 
values greater than 1.
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Transparency

Refraction Vector
n

-n

n cos𝛳ii 𝛳i

n cos𝛳i - i

m

𝛳t t-cos𝛳t n

sin𝛳t m

=(n cos𝛳i - i)/sin𝛳i

t

Unit vector along transmitted direction:

=sin𝛳t m - cos𝛳i n

=sin𝛳t m - cos𝛳t n

t =
sin �t

sin �i
(n cos �i � i) � cos �tn

replacing m:

t =
�i

�t
(n cos �i � i) � cos �tn

or:
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eye

Inter-object Reflections

Reflection Maps
• Inter-object reflections (both 

specular and diffuse) occur 
when surfaces reflect other 
surfaces

• Reflection mapping (or 
environment mapping) model 
specular inter-object reflection

• mapping each vertex of a 
polygon will give the 
corresponding reflection 
polygon in the map

• The way R is used to index the 
map depends on the particular 
method.

V

N R

Map

Surface
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Inter-object Reflections

Reflection Maps: spherical mapping
• Spherical environment mapping starts by choosing a centre of projection to map the 

environment to be reflected onto a sphere surrounding the objects to be rendered

• The environment can be treated as 
a 2D texture

• On each point of the object to be 
rendered, the view vector V is 
reflected about N to give R.

• R is used to index the environment 
map by using polar coordinates

• The environment mapped sphere is 
assumed to be infinitely big

- problems at the caps of the sphere

- Distortion

- Not valid for concave objects (no 
self reflections are visible)
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Inter-object Reflections

Reflection Maps: spherical mapping

𝛳

𝜙

R

P x

y

z

•The reflection vector (x,y,z) coordinates are mapped to polar coordinates 
(𝛳,𝜙).

•Latitude (𝛳) and longitude (𝜙) are used to index the sphere map

𝜙

𝛳
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Inter-object Reflections

Reflection Maps: cube mapping

• Cube mapping is preferable to spherical mapping 
because:

✓ causes less distortion

✓ texture resolution is less critical (each face has the 
same resolution as the whole map of spherical mapping)

• A map is generated for each face of the cube by projecting 
the scene along the direction of that face

• Using the normalised reflection vector R, the component 
with the highest magnitude tells which pair of opposite faces 
to look for. The sign chooses between the pair.
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Inter-object Reflections

Cube mapping

Cube map

viewpoint to cube map 
generation

Cube map mapped to an 
object (in this case also a 

cube)

R

P x

y

z

biggest component 
and corresponding 
sign of reflection 

vector determines 
face to index (top 
face in this case )
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Inter-object Reflections

Cube mapping What if the objects in 
the scene are moving 
or if new objects are 

being added?
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Inter-object Reflections

Reflections on a plane surface

• Reflections on large planar 
surfaces are better handled by 
rendering an inverted (mirrored) 
version of the object

1. Draw inverted model with z-
buffer active

2.Draw mirror plane with z buffer 
active and blend it with the frame 
buffer contents

3.Draw normal model with z-buffer 
and no blending
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Reflections on a plane surface
Problem:  What if the mirror plane is not 

big enough?

Right Wrong

1.Render the mirror plane into a stencil buffer only

2.Render the mirrored version with stencil enabled

3.Clear depth buffer and render actual model

4.Render the mirror plane using front-to-back 
blending

Solution: 

1 2 3 4
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Shadows

Where is the character? 

Shadows improve our perception of relative positions
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Shadows

• Shadows are relatively easy to include in shading, 
for point light sources

• Small change to Phong's illumination model:

I = IaKaOd +
L�

l=1

Sifatt,lIp,l[kdOd(N · L) + KsOs(N · H)n]

Si =

�
0, if light i is blocked
1, if light i is not blocked

- All or nothing doesn’t take into account indirect 
illumination (light reflected off other surfaces)

- For area light sources, shadow intensity depends on 
the amount of light that is blocked…
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Shadows

hard shadows soft shadows

Point light sources Area light sources

Umbra

Penumbra
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Shadows
Hasenfratz et al. / Real-time Soft Shadows

Receiver

Occluder

Hard Shadow

Point light source

(a) Geometry of hard shadows

Receiver Receiver

Occluder Occluder

Sh
ad

ow
s 

du
e 

to
 

ea
ch

 v
er

tic
es

Umbra

Penumbra

Area light source Area light source

(b) Geometry of soft shadows

(c) Illustration of hard shadows (d) Illustration of soft shadows

Figure 4: Hard vs. soft shadows.

2.4. Important issues in computing soft shadows

2.4.1. Composition of multiple shadows

While the creation of a shadow is easily described for a (light
source, occluder, receiver) triple, care must be taken to allow
for more complex situations.

Shadows from several light sources Shadows produced
by multiple light sources are relatively easy to obtain if we
know how to deal with a single source (see Figure 5). Due
to the linear nature of light transfer we simply sum the con-
tribution of each light (for each wavelength or color band).

Shadows from several objects For point light sources,
shadows due to different occluders can be easily combined
since the shadow area (where the light source is invisible) is
the union of all individual shadows.

With an area light source, combining the shadows of sev-
eral occluders is more complicated. Recall that the lighting
contribution of the light source on the receiver involves a
partial visibility function: a major issue is that no simple
combination of the partial visibility functions of distinct oc-
cluders can yield the partial visibility function of the set of
occluders considered together. For instance there may be

points in the scene where the light source is not occluded
by any object taken separately, but is totally occluded by
the set of objects taken together. The correlation between
the partial visibility functions of different occluders cannot
be predicted easily, but can sometimes be approximated or
bounded45, 5.

As a consequence, the shadow of the union of the objects
can be larger than the union of the shadows of the objects
(see Figure 6). This effect is quite real, but is not very visible
on typical scenes, especially if the objects casting shadows
are animated.

2.4.2. Physically exact or fake shadows

Shadows from an extended light source Soft shadows
come from spatially extended light sources. To model prop-
erly the shadow cast by such light sources, we must take into
account all the parts of the occluder that block light com-
ing from the light source. This requires identifying all parts
of the object casting shadow that are visible from at least
one point of the extended light source, which is algorithmi-
cally much more complicated than identifying parts of the
occluder that are visible from a single point.

Because this visibility information is much more difficult

c� The Eurographics Association and Blackwell Publishers 2003.

Picture taken from: http://maverick.inria.fr/Publications/2003/HLHS03a/SurveyRTSoftShadows.pdf

Hard and Soft shadows
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Shadows

Hasenfratz et al. / Real-time Soft Shadows

Figure 5: Complex shadow due to multiple light sources. Note the complex interplay of colored lights and shadows in the
complementary colors.

Figure 7: When the light source is significantly larger than the occluder, the shape of the shadow is very different from the
shape computed using a single sample; the sides of the object are playing a part in the shadowing.

to compute with extended light sources than with point light
sources, most real-time soft shadow algorithms compute vis-
ibility information from just one point (usually the center of
the light source) and then simulate the behavior of the ex-
tended light source using this visibility information (com-
puted for a point).

This method produces shadows that are not physically ex-
act, of course, but can be close enough to real shadows for
most practical applications. The difference between the ap-
proximation and the real shadow is harder to notice if the
objects and their shadow are animated — a common occur-
rence in real-time algorithms.

The difference becomes more noticeable if the difference
between the actual extended light source and the point used
for the approximation is large, as seen from the object cast-
ing shadow. A common example is for a large light source,
close enough from the object casting shadow that points of

the light source are actually seeing different sides of the ob-
ject (see Figure 7). In that case, the physically exact shadow
is very different from the approximated version.

While large light sources are not frequent in real-time al-
gorithms, the same problem also occurs if the object casting
shadow is extended along the axis of the light source, e.g.
a character with elongated arms whose right arm is point-
ing toward light source, and whose left arm is close to the
receiver.

In such a configuration, if we want to compute a better
looking shadow, we can either:

• Use the complete extension of the light source for visibil-
ity computations. This is algorithmically too complicated
to be used in real-time algorithms.

• Separate the light source into smaller light sources24, 5.
This removes some of the artefacts, since each light source
is treated separately, and is geometrically closer to the

c� The Eurographics Association and Blackwell Publishers 2003.

Variation of shadow with light source 
geometry
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Shadows

Soft shadows by accumulation of hard 
shadows

Hasenfratz et al. / Real-time Soft Shadows

Figure 10: Combining several occlusion maps to compute
soft shadows. Left: the occlusion map computed for a single
sample. Center: the attenuation map computed using 4 sam-
ples. Right: the attenuation map computed using 64 samples.

Figure 11:With only a small number of samples on the light
source, artefacts are visible. Left: soft shadow computed us-
ing 4 samples. Right: soft shadow computed using 1024 sam-
ples.

We start by computing a binary occlusion map for each
sample point on the light source. For each sample point on
the light source, we render the scene into an auxiliary buffer,
using 0 for the receiver, and 1 for any other polygon. These
binary occlusion maps are then combined into an attenuation
map, where each pixel stores the number of sample points
on the light source that are occluded. This attenuation map
contains a precise representation of the soft shadow (see Fig-
ures 10 and 11).

In the rendering pass, this soft shadow texture is combined
with standard textures and illumination, in a standard graph-
ics pipeline.

Discussion The biggest problem for Herf25 method is ren-
dering the attenuation maps. This requires NpNs rendering
passes, where Np is the number of objects receiving shad-
ows, and Ns is the number of samples on the light source.
Each pass takes a time proportionnal to the number of poly-
gons in the objects casting shadows. In practice, to make this
method run in real time, we have to limit the number of re-
ceivers to a single planar receiver.

To speed-up computation of the attenuation map, we can
lower the number of polygons in the occluders. We can also
lower the number of samples (n) to increase the framerate,
but this is done at the expense of image quality, as the attenu-

ation map contains only n�1 gray levels. With fewer than 9
samples (3⇥3), the user sees several hard shadows, instead
of a single soft shadow (see Figure 11).

Herf’s method is easy to parallelize, since all occlusion
maps can be computed separately, and only one computer
is needed to combine them. Isard et al.28 reports that a par-
allel implementation of this algorithm on a 9-node Sepia-2a
parallel calculator with high-end graphics cards runs at more
than 100 fps for moderately complex scenes.

3.1.2. Layered Attenuation Maps1

The Layered Attenuation Maps1 method is based on a modi-
fied layered depth image29. It is an extension of the previous
method, where we compute a layered attenuation map for
the entire scene, instead of a specific shadow map for each
object receiving shadow.

Method It starts like the previous method: we place sam-
ple points on the area light source, and we use these sample
points to compute a modified attenuation map:

• For each sample point, we compute a view of the scene,
along the direction of the normal to the light source.

• Theses images are all warped to a central reference, the
center of the light source.

• For each pixel of these images:

– In each view of the scene, we have computed the dis-
tance to the light source in the Z-buffer.

– We can therefore identify the object that is closest to
the light source.

– This object makes the first layer of the layered attenu-
ation map.

– We count the number of samples seeing this object,
which gives us the percentage of occlusion for this ob-
ject.

– If other objects are visible for this pixel but further
away from the light they make the subsequent layers.

– For each layer, we store the distance to the light source
and the percentage of occlusion.

The computed Layered Attenuation Map contains, for all
the objects that are visible from at least one sample point,
the distance to the light source and the percentage of sample
points seeing this object.

At rendering time, the Layered Attenuation Map is used
like a standard attenuation map, with the difference that all
the objects visible from the light source are stored in the
map:

• First we render the scene, using standard illumination and
textures. This first pass eliminates all objects invisible
from the viewer.

• Then, for each pixel of the image, we find whether the
corresponding point in the scene is in the Layered Atten-
uation Map or not. If it is, then we modulate the lighting

c� The Eurographics Association and Blackwell Publishers 2003.

4 samples
1024 samples
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Shadows

A hard shadow projected on a surface
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Shadows

Hard shadow produced from point 1
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Shadows

Hard shadow produced from point 2
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Shadows

Hard shadow produced from point 3
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Shadows

Hard shadow produced from point 4
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Shadows
Soft shadow produced by 4 accumulated hard 
shadows
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Shadows

• 1968-1970: Integration of shadow polygons with a scan-line 
hidden surface removal algorithm. Shadows are computed 
while producing the image

• 1978: Shadow generation based on transformations and 
clipping. Shadows are precomputed and stored in a database

• 1977: 2 Stage generation with shadow volumes. A shadow 
volume is generated for each light source and accessed 
during rendering.

• Shadow determination using z-buffer

• Shadow determination with recursive ray-tracing

• Shadow determination with radiosity method

Shadow generation techniques
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Shadows

• In a preprocessing step determine for each 
polygon all the other polygons that can 
possibly shadow it (shadow polygons). This can 
be done by surrounding the light with a sphere 
and projecting all polygons onto its surface.

• During scan-line hidden surface removal, for a 
polygon, if no shadow polygons exist do as 
normal, otherwise:

1.shadow polygon completely overlaps current 
scan-line segment ⇒ reduce intensity

2.shadow polygon does not overlap the current 
scan-line segment ⇒ shade as normal

3.shadow polygon partially overlaps current 
scan-line segment ⇒ subdivide segment where 

scan-line segment intersects shadow polygon 
and restart the step

Shadows in scan-line algorithms (68-70)

- Limited to objects modelled with polygons

- Limited to point light sources (hard 
shadows only)

- Preprocessing stage can take a lot of time
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Shadows

• A Hidden surface removal algorithm 
(Weiler-Atherton) is applied to a view 
computed from the light source to find 
complete surface detail shadow polygons 
(c-d) by clipping the original surfaces 
against the lighted parts.

• Shadow polygons from previous step (d) 
are transformed back to original object 
coordinates and a new view independent 
model is created (e).

• Hidden surface removal computed from 
the viewpoint is applied to the previous 
model (f)

Shadows with transformations and clipping 
(78)

- Limited to objects modelled with polygons

- hard shadows only

+Computation is performed with object resolution (exact)

+Illuminated/Shadowed areas can be computed (CAD)
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Shadows

• Shadow volumes are defined for polygonal 
objects that may cast shadows

• The shadow volume determines the portion of 
space in the shadow of an object for a 
particular point light source 

• The shadow volume is defined by the front 
facing polygons of the object viewed from the 
light source…

• … quadrilaterals with one edge being a 
silhouette edge of the object…

• … 2 edges connecting the vertices of the 
silhouette edge to points far away enough to be 
outside the view frustum. These two edges, if 
prolonged, would pass through the point light

• … and a remaining edge outside the view 
volume

Shadows with Shadow Volumes (77)
view frustum

shadow volume

shadow volume may 
include this part
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Shadows

• The basic idea is that if we sort the shadow 
volume polygons in increasing order of depth 
from the viewpoint…

• … and distinguish between front facing and 
back facing shadow polygons…

• …crossing a front facing shadow polygon will 
increase the shadow counter (entering the 
shadow volume)…

• … crossing a back facing shadow polygon will 
decrease the shadow counter (leaving the 
shadow volume)…

• The shadow counter starts with:

• 0 if viewpoint is outside the shadow 
volume

• 1 if viewpoint is inside the shadow volume

Shadow Volumes in use

0

1

1

0

0

Hasenfratz et al. / Real-time Soft Shadows

1 12 0

-1

-1
-1

+1

+1

+1

+1

+1

+1

+1

Light source

Occluder 1
Viewer

Occluder 2

Figure 9: Shadow volume.

warp the shadow map into camera space55 rather than the
usual opposite: it has the advantage that we obtain a modu-
lation image that can be mixed with a texture, or blurred to
produce antialiased shadows.

Discussion Shadow mapping has many advantages:

• it can be implemented entirely using graphics hardware;
• creating the shadow map is relatively fast, although it still
depends on the number and complexity of the occluders;

• it handles self-shadowing.

It also has several drawbacks:

• it is subject to many sampling and aliasing problems;
• it cannot handle omni-directional light sources;
• at least two rendering passes are required (one from the
light source and one from the viewpoint);

2.5.2. The Shadow Volume Algorithm

Another way to think about shadow generation is purely ge-
ometrical. This method was first described by Crow12, and
first implemented using graphics hardware by Heidmann23.

Method The algorithm consists in finding the silhouette
of occluders along the light direction, then extruding this
silhouette along the light direction, thus forming a shadow
volume. Objects that are inside the shadow volume are in
shadow, and objects that are outside are illuminated.

The shadow volume is calculated in two steps:

• the first step consists in finding the silhouette of the oc-
cluder as viewed from the light source. The simplest
method is to keep edges that are shared by a triangle fac-
ing the light and another in the opposite direction. This
actually gives a superset of the true silhouette, but it is
sufficient for the algorithm.

• then we construct the shadow volume by extruding these
edges along the direction of the point light source. For
each edge of the silhouette, we build the half-plane sub-
tended by the plane defined by the edge and the light
source. All these half-planes define the shadow volume,
and knowing if a point is in shadow is then a matter of
knowing if it is inside or outside the volume.

• for each pixel in the image rendered, we count the num-
ber of faces of the shadow volume that we are crossing
between the view point and the object rendered. Front-
facing faces of the shadow volume (with respect to the
view point) increment the count, back-facing faces decre-
ment the count (see Figure 9). If the total number of faces
is positive, then we are inside the shadow volume, and the
pixel is rendered using only ambient lighting.

The rendering pass is easily done in hardware using a
stencil buffer23, 32, 15; faces of the shadow volume are ren-
dered in the stencil buffer with depth test enabled this way:
in a first pass, front faces of the shadow volumes are ren-
dered incrementing the stencil buffer; in a second pass, back
faces are rendered, decrementing it. Pixels that are in shadow
are “captured” between front and back faces of the shadow
volume, and have a positive value in the stencil buffer. This
way to render volumes is called zpass.

Therefore the complete algorithm to obtain a picture using
the Shadow Volume method is:

• render the scene with only ambient/emissive lighting;
• calculate and render shadow volumes in the stencil buffer;
• render the scene illuminated with stencil test enabled:
only pixels which stencil value is 0 are rendered, others
are not updated, keeping their ambient color.

Improvements The cost of the algorithm is directly linked
to the number of edges in the shadow volume. Batagelo and
Júnior7 minimize the number of volumes rendered by precal-
culating in software a modified BSP tree. McCool39 extracts
the silhouette by first computing a shadowmap, then extract-
ing the discontinuities of the shadow map, but this method
requires reading back the depth buffer from the graphics
board to the CPU, which is costly. Brabec and Seidel10 re-
ports a method to compute the silhouette of the occluders
using programmable graphics hardware14, thus obtaining an
almost completely hardware-based implementation of the
shadow volume algorithm (he still has to read back a buffer
into the CPU for parameter transfer).

Roettger et al.43 suggests an implementation that doesn’t
require the stencil buffer; he draws the shadow volume in
the alpha buffer, replacing increment/decrement with a mul-
tiply/divide by 2 operation.

Everitt and Kilgard15 have described a robust implementa-
tion of the shadow volume algorithm. Their method includes
capping the shadow volume, setting w= 0 for extruded ver-
tices (effectively making infinitely long quads) and setting
the far plane at an infinite distance (they prove that this step

c� The Eurographics Association and Blackwell Publishers 2003.
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Shadows

• All front facing polygons (from the light point of view) 
are shadow volume polygons (the front cap)

• To compute the side walls of the shadow volume we 
need to determine which edges of the B-rep are 
silhouette edges.

• A silhouette edge is an edge connecting two faces of 
the model such that:

• the normal of one of the faces points towards the 
light source

• the normal of the other face points away from the 
light source

• A boundary edge is also a silhouette edge

• If the vertices of a silhouette edge are Va and Vb, we 
extrude the edge away from the light. Determine two 
additional points V’a and V’b, outside the view volume 
such that L (the light position), Va and V’a are co-linear, 
as well as L, Vb and V’b

• Finally connect al V’* points to form the other cap of 
the volume

Shadow Volumes computation
silhouette edges

silhouette edges

Va
Vb

V’a

V’b
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Shadows

1. Render the scene as if it were 
completely in shadow

2. For each light source construct a 
mask in the stencil buffer with holes 
where the visible surface is not inside 
a shadow volume

3. Render the scene again as if it were 
completely lit. Stenciled pixels will 
get this render results added to the 
shadowed rendering of the first pass.

• There are 3 variations on how to 
produce the mask in step 2: depth-
pass, depth-fail and exclusive-or

Stenciled Shadow Volumes 
(91)
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Shadows

1. Disable z-buffer and colour buffer

2. Turn back-face culling on

3. Set stencil operation to increment on depth pass (count shadow volume 
polygons in front of the object)

4. Render shadow volumes (only front faces will be drawn)

5. Turn front-face culling on

6. Set stencil operation to decrement on depth pass

7. Render shadow volumes (only back faces will be draw)

Stenciled Shadow Volumes: Depth 
pass*

* algorithm starts with an unlit version of the model already rendered, including the depth buffer values

+Shadow volume doesn’t need to be capped at the rear end

- Doesn’t work if viewpoint is inside shadow volume (light behind object or 
object casting shadow behind the viewpoint)
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Shadows

1. Disable z-buffer and colour buffer

2. Front-face culling on

3. Set stencil to increment on depth fail (count shadows behind the object

4. Render shadow volumes

5. Back-face culling on

6. Set stencil operation to decrement on depth fail

7. Render shadow volumes

Stenciled Shadow Volumes: Depth 
fail*

* algorithm starts with an unlit version of the model already rendered, including the depth buffer values

+Works for viewpoints inside shadow volumes too because shadow surfaces 
between eye and object are not counted

- shadow volume needs to be capped at the rear
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Shadows

1. Disable z-buffer and colour buffer

2. Set stencil operation to XOR on depth pass

3. Render shadow volumes

Stenciled Shadow Volumes: 
Exclusive or*

* algorithm starts with an unlit version of the model already rendered, including the depth buffer values

+Saves a rendering step

- Does not work for intersecting shadow volumes
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Shadows

1.Generate a view from the light and 
keep the z-buffer result

2.Use a modified z-buffer algorithm 
to compute the image from the 
viewer:

1.For every visible pixel, 
transform to light coordinate 
system (x’,y’,z’) and use (x’,y’) to 
access the light z-buffer value zL.

2.If zL is nearer the camera than z’ 
than there is some other object 
blocking the light and the pixel is 
in shadow. Otherwise it is lit.

2 pass shadow generation with z-buffer (image precision)

Shadow map
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Shadows

2 pass shadow generation with z-buffer (image precision)

•Several light sources 
can be handled. For 
each light source 
generate a shadow map 
(z-buffer from light’s 
point of view)

- More adequate for 
spotlights or lights at 
infinity

- Aliasing artefacts 
(shadow acne)

✓Hardware accelerated Multiple shadows
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Shadows

2 pass shadow generation with z-buffer (image precision)

View from light 1 View from light 2 View from viewer

Example from http://web.cs.wpi.edu/~matt/courses/cs563/talks/shadow/shadow.html 
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Shadows

2 pass shadow generation with z-buffer (image precision)

Shadows on texture mapped objects Wrong shadows from precision problems
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Mapping Applications

Property Map Technique

kd, diffuse reflectivity UV Diffuse detail mapping, like the 
upholstery on a sofa

ks, glossy reflectivity UV
Glossy detail, like the part of a 

tarnished doorknob that’s polished by 
constant use

Lin Reflection Environment mapping

Lout UV
Light mapping. Texture mapping is 
used to specify the emissivity of an 

object like a neon lamp

Position or normal vector UV Bump mapping or displacement 
mapping

Visibility of a light source Perspective projection Shadow mapping

Artistic Lout Various dot products XToon shading in expressive 
rendering




